In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature.
نویسندگان
چکیده
In this study, high resolution backward-mode photoacoustic microscopy (PAM) is used to noninvasively image progressive extravasation and accumulation of nanoshells within a solid tumor in vivo. PAM takes advantage of the strong near-infrared absorption of nanoshells and their extravasation tendency from leaky tumor vasculatures for imaging. Subcutaneous tumors are grown on immunocompetent BALB/c mice. Polyethylene glycol (PEGylated) nanoshells with a peak optical absorption at approximately 800 nm are intravenously administered. With an 800-nm laser source, a prescan prior to nanoshell injection is taken to determine the background that is free of nanoshell accumulation. After injection, the 3-D nanoshell distribution at the tumor foci is monitored by PAM for 6 h. Experimental results show that accumulated nanoshells delineate the tumor position. Nanoshell accumulation is heterogeneous in tumors: more concentrated within the tumor cortex and largely absent from the tumor core. Because nanoshells have been recently demonstrated to enhance thermal therapy of subcutaneous tumors, we anticipate that PAM will be an important aid before, during, and after nanoshell thermal therapy.
منابع مشابه
Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy.
Dual-wavelength reflection-mode photoacoustic microscopy is used to noninvasively obtain three-dimensional (3-D) images of subcutaneous melanomas and their surrounding vasculature in nude mice in vivo. The absorption coefficients of blood and melanin-pigmented melanomas vary greatly relative to each other at these two optical wavelengths (764 and 584 nm). Using high-resolution and high-contrast...
متن کاملPhotodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy
One of the main mechanisms of action for photodynamic therapy (PDT) is the destruction of tumor vasculature. We observed the PDT-induced vasculature destruction in a mouse model of skin cancer using two techniques: Photoacoustic microscopy (PAM) and diffuse correlation spectroscopy (DCS). PAM showed high-resolution images of the abnormal microvasculature near the establishing tumor area at pre-...
متن کاملIn vivo preclinical photoacoustic imaging of tumor vasculature development and therapy.
The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to ...
متن کاملHybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging.
Recently developed optical-resolution photoacoustic microscopy (OR-PAM), which is based on the detection of optical absorption contrast, is complementary to other optical microscopy modalities such as optical confocal microscopy, optical coherence tomography, and multiphoton microscopy. A hybrid optical-mechanical scanning configuration increases the imaging speed of OR-PAM significantly, facil...
متن کاملCharacterization of tumor microvascular structure and permeability: comparison between magnetic resonance imaging and intravital confocal imaging.
Solid tumors are characterized by abnormal blood vessel organization, structure, and function. These abnormalities give rise to enhanced vascular permeability and may predict therapeutic responses. The permeability and architecture of the microvasculature in human osteosarcoma tumors growing in dorsal window chambers in athymic mice were measured by confocal laser scanning microscopy (CLSM) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2009